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Abstract

The effects of confinement, both the structure frustration and the surface field, on phase transitions of symmetric diblock copolymer melts are
investigated within several theoretical methods on the mean-field level. Confinements are applied by restricting polymer chains in the finite
spaces of slabs. The surface can be neutral or preferential depending on the strength of the surface field. Within the one-dimensional self-
consistent mean-field theory, for the neutral surface case, an oscillative behavior is observed for the size dependence of the orderedisorder tran-
sition (ODT) point (cN )t due to the structure frustration. The spinodal (cN )s for this corresponding confined system is also calculated using the
Gaussian fluctuation theory and the LandaueBrazovskii theory, and (cN )s coincides exactly with (cN )t. On the other hand, the surface effect
plays the role to decrease (cN )t due to the surface-induced spatial oscillation for the preferential surface case. In all confined systems considered,
the ODT for symmetric diblock copolymer melts is a continuous second-order phase transition in the present mean-field calculation.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Diblock copolymers can undergo a microphase separation
transition (MST) to form a variety of ordered structures in
nanoscale. The bulk phase behavior has been extensively stud-
ied, both experimentally and theoretically. Up to present,
a phase diagram has been constructed successfully for diblock
copolymer melts [1e7].

Leibler [6] first developed a mean-field theory to investi-
gate phase transitions in diblock copolymer melts. Basically,
this method is a Landau expansion of the free energy around
the high-temperature homogeneous phase, resorting to the
random phase approximation (RPA). Thus, this theory is re-
stricted to the weak segregation regime. Within this mean-field
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theory, the MST, or the orderedisorder transition (ODT), co-
incides with the spinodal for symmetric diblock copolymers
of f¼ 0.5 and the transition is second order, while the MST
is first order for the asymmetric case of f s 0.5. Here, f is
the volume fraction of A monomer of the diblock chains.
Fredrickson and Helfand [7] treated the composition fluctua-
tions in diblock copolymer melts by extending Brazovskii
theory to diblock copolymers. In their treatment, Leibler’s
Landau-type free energy functional was reduced to a form
considered by Brazovskii, and then the self-consistent Hartree
approximation was performed for the fluctuations. In this the-
ory of fluctuation, the MST turns out to be weakly first-order
for the symmetric diblock copolymers.

In recent years, confined systems have been of great theoret-
ical and experimental interests [8e49]. Confinements play a sig-
nificant role when the size of the system becomes comparable to
the typical length characterizing the structure of the system, and
the bulk phase diagram will be modified generally.
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The thin film of block copolymers has been intensively
explored in the past decade [8e24]. Most of the theoretical
investigations focused on the lamella-forming symmetric di-
block copolymer melts confined between two parallel hard
walls, which are called as slabs in this paper. Turner [8] devel-
oped a strong segregation theory, which considers symmetric
(the same block is in contact with both surfaces) and antisym-
metric (each block is in contact with one of the surfaces)
lamellar morphologies oriented parallel to the confining sur-
faces, to study the equilibrium behavior of the diblock copol-
ymer lamellar phase confined in the slabs. They predicted that,
depending on the interfacial energy of confining surfaces and
the film thickness, the free energy of the symmetric and anti-
symmetric lamellar morphologies can attain local minima
when the film thickness conforms to an integer or half-
odd-integer multiple of the natural bulk period of the lamellar
structure. Walton et al. [9] extended this theory by including
the possibility of the perpendicularly oriented lamellar struc-
ture, in which the natural bulk lamellar period can be realized.
Further generalization of this theory was done by Turner et al.
[10], where the mixed morphologies (different combinations
of parallel and perpendicular lamellar pattern) of the film
were shown to be unstable, while pure parallel and perpendic-
ular morphologies can be formed for both small and large
distances between the walls depending on the surface tension.
Binder and Kikuchi [11,12] carried out Monte Carlo simula-
tions to study the phase behaviors of thin film, where the sur-
face field is repulsive to one of the blocks. Sommer et al. [13]
predicted that lamellae orient perpendicular to the perfectly
neutral walls. Based on the self-consistent field calculations,
Tang [14] and Fasolka et al. [15] constructed the phase dia-
gram of the film, whose thickness is equal to or below the
bulk natural lamellar period.

On the other hand, the surface-induced ordering for diblock
copolymer systems has also been extensively investigated.
Fredrickson [35] used a mean-field theory in the weak segre-
gation regime to study the surface ordering phenomena for
symmetric diblock copolymers in contact with a surface hav-
ing preferential interaction with one of the two blocks. Just
above the bulk ODT, the order parameter, which is the devia-
tion of the A monomer concentration from its average value f,
behaves a decaying oscillation characterized by a correlation
length x, which diverges as the ODT is approached. Below
the ODT, the system is characterized by a spatially modulated
pattern. Further investigations [36] by including higher order,
nonlinear corrections to the mean-field theory resulted in
a non-divergent x. Kielhorn and Muthukumar [37] investigated
the effect of a patterned surface on the phase separation kinet-
ics of a thin polymer film using the CahneHilliardeCook
model and the pattern-induced spinodal waves perpendicular
to the surface is observed. Freed et al. [38e40] employed an
analytical density-functional self-consistent field theory to
study the density profiles of homopolymer blends, homopoly-
mer melts, homopolymer solutions and diblock copolymer
melts near the patterned surfaces. Tan et al. [41] investigated
the surface-induced structure in the body-centered-cubic phase
of diblock copolymers employing the LandaueBrazovskii
theory. Tsori and Andelman [42e46] have extensively ex-
plored the ordering mechanism for confined diblock copoly-
mers based on a coarse-grained GinzburgeLandau free
energy functional and various surface-induced patterns were
observed in their model.

In general, confinements introduce two factors into the sys-
tems, i.e., the structure frustration and the surface effect. The
structure frustration comes from the commensurability be-
tween the size of the confinement and the natural period of
the bulk ordered structure, while the surface effect is due to
the interaction between the surfaces and the polymers. The in-
terplay between them determines the phase behavior. On the
other hand, it is worthwhile to distinguish these two effects
for a better understanding and this can be realized by estab-
lishing neutral surfaces. Experimentally, a general method for
neutralizing the surface has been successfully demonstrated
[18]. Also, neutral surfaces can be obtained conveniently in
theoretical model. Most recently [49], within the Gaussian
fluctuation theory [50e53] and the LandaueBrazovskii theory
[53e55], we studied the spinodal behavior of the homogeneous
diblock copolymer melts confined in neutral slabs, cylindrical
pores and spherical pores, corresponding to the one-, two-
and three-dimensional confinements, respectively. The effects
of structure frustration are well represented.

In the present work, first we study theoretically the phase
transitions in confined symmetric ( f¼ 0.5) diblock copolymer
melts within the reciprocal self-consistent mean-field theory
(SCMFT). We assume that the ordered structure is the parallel
lamella (the diblock copolymer chains are perpendicular to the
surfaces). Thus, we only need to do the calculation of the
SCMFT in one dimension along the direction of confinement.
Although the assumption on the ordered structure orientation
along the confinement may not be realistic in some neutral
confined systems since the polymer chains can relax the con-
finement effects by arranging themselves along the free dimen-
sions in the confined system [49], the frustration effects can be
focused and understood intensively in our one-dimensional
calculation along the confined direction. And our conclusions
on the frustration effect will be generally true for the three-
dimensional confined systems, in which there is no free dimen-
sion and the confinement must play its role to modify the phase
behaviors. Hereafter, we will use MST and ODT alternatively
for convenience of the presentation. By choosing the strength
of the surface field, we investigate the confined systems with
neutral surfaces and preferential surfaces, respectively.

In the bulk symmetric diblock copolymer melts, the MST
coincides exactly with the spinodal in the mean-field theory.
To check this for the confined case, we carry out the spinodal
calculation for the homogeneous diblock melts confined by
neutral surfaces with the parallel lamella using the Gaussian
fluctuation theory and the LandaueBrazovskii theory.

Formally, the SCMFT, the Gaussian fluctuation theory and
the LandaueBrazovskii theory can be derived from a general
self-consistent field theory by a systematic expansion method
[50e53]. Compared to the previous works, the phase transi-
tions in the confined diblock copolymer melts are understood
intensively by the combination of these different theoretical
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methods on the mean-field level. Especially, the SCMFT calcu-
lation can give the clear picture of the evolution of the struc-
tures in the confined space and determine the ODT exactly,
while the Gaussian fluctuation theory and the Landaue
Brazovskii theory determine the spinodal of the confined melts.
Thus, the nature of the transitions can be understood clearly by
putting the information from all the theories together.

This paper is organized as follows. In Section 2 the SCMFT
both in the real space and reciprocal space is applied to the
present system. In Section 3 the main results and discussions
are given. In Section 4 the conclusions and possible future
work are presented.

2. Self-consistent mean-field theory

We consider an incompressible melt of AB diblock copol-
ymers confined in a finite volume V. The degree of polymeri-
zation of the diblock copolymer chains is N. The composition
of a monomer is fa, where fa¼ f and 1� f for a¼A and B,
respectively. The monomer statistical Kuhn length is b. We
take bA¼ bB¼ b for simplicity. In the following, we will
use the convention in which all lengths are scaled by the
Gaussian radius of gyration, Rg ¼ b

ffiffiffiffiffiffiffiffiffi
N=6

p
, and the chain

arc length is scaled by N. Within the mean-field approximation
to the many-chain Edwards theory, the free energy density
functional can be written as

bF¼�lnQcþ
1

V

Z
drfcNfAðrÞfBðrÞ�uAðrÞfAðrÞ

�uBðrÞfBðrÞ�VðrÞ½fAðrÞ�fBðrÞ��hðrÞ½1�fAðrÞ
�fBðrÞ�g;

ð1Þ

where b¼ 1/kBT with the Boltzmann’s constant kB and the
temperature T; c is the FloryeHuggins parameter; fA and
fB are the monomer densities; uA and uB are the self-
consistent mean fields conjugate to the monomer densities;
Qc is the single-chain partition function in the presence of
the self-consistent mean fields uA and uB; h is the Lagrange
multiplier to ensure the incompressibility condition; V(r) is
the surface field which introduces the contribution from sur-
face interaction to the free energy by coupling to the monomer
densities.

Minimization of the free energy density F with respect to
fA, fB, uA, uB and h leads to a set of mean-field equations

uAðrÞ ¼ cNfBðrÞ �VðrÞ þ hðrÞ; ð2Þ

uBðrÞ ¼ cNfAðrÞ þVðrÞ þ hðrÞ; ð3Þ

fAðrÞ ¼
1

Qc

Z f

0

ds q
�
r; s
�
qy
�
r; s
�
; ð4Þ

fBðrÞ ¼
1

Qc

Z1

f

ds q
�
r; s
�
qy
�
r; s
�
; ð5Þ

fBðrÞ þfBðrÞ ¼ 1 ð6Þ
with

Qc ¼
1

V

Z
dr q

�
r; s
�
qy
�
r; s
�
: ð7Þ

The key quantity in this calculation is the end-integrated prop-
agators q(r, s) and qy(r, s), which are proportional to the prob-
ability of finding the monomer s at the spatial position r. They
satisfy the modified diffusion equations

vqðr; sÞ
vs

¼ V2qðr; sÞ �uðr; sÞqðr; sÞ; ð8Þ

�vqyðr; sÞ
vs

¼ V2qyðr; sÞ �uðr; sÞqyðr; sÞ; ð9Þ

where u(r, s)¼uA(r) for 0� s� f and u(r, s)¼uB(r) for
f< s� 1. The initial conditions are q(r, 0)¼ 1 and qy(r,
1)¼ 1.

This set of equations in real space is complete and can be
solved numerically by iteration. In the present study, we focus
on the lamella-forming symmetric diblock copolymers. Thus,
we assume that the ordered structure is the parallel lamella
with the chains perpendicular to the surface. This assumption
leads to the one-dimensional calculation along the direction of
confinement. The surface can be neutral or preferential to the
diblock chains depending on the strength of the surface field
V(r). To deal with the symmetric diblocks, it should be noted
that the MST coincides exactly with the spinodal for the bulk
system in the mean-field theory.

We formulate the SCMFT in the reciprocal space in terms
of the appropriate basis functions for the geometric spaces
considered. The basis set {fn(r)} is chosen to be the eigenfunc-
tions of the Laplace operator V2, or,

V2fn

�
r
�
¼�lnfn

�
r
�

ð10Þ

with ln as the corresponding eigenvalues. As Fredrickson has
argued for the investigation of confined systems [55], we take
the Neumann boundary conditions in this research, in which
the gradients of the eigenfunctions are zero at the boundaries,
or Vfn(r)jboundary¼ 0.

For the confinement of slabs, the direction perpendicular to
the two parallel surfaces is chosen as x axis, while the other
two directions are homogeneous and can be neglected in the
present one-dimensional calculation. Thus,

fnðrÞ ¼
�

1 n¼ 0ffiffiffi
2
p

cos
�
knx
�

n¼ 1;2;3.
ð11Þ

with the corresponding eigenvalues

ln ¼ k2
n: ð12Þ

Here, kn¼ np/D is determined from the boundary condition,
or, sin(kn0)¼ sin(knD)¼ 0, where D is the separation of the
slabs.

Since the set of {fn(r)} is complete
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X
n

fn

�
r
�
f �n
�
r0
�
¼ dðr� r0Þ ð13Þ

and orthogonal

1

V

Z
dr f �n

�
r
�
fmðrÞ ¼ dn;m; ð14Þ

we can expand all the spatially dependent quantities in terms
of fn(r),

fAðrÞ ¼
X

n

fA;n fnðrÞ; ð15Þ

fBðrÞ ¼
X

n

fB;n fnðrÞ; ð16Þ

qðr; sÞ ¼
X

n

qnðsÞfnðrÞ; ð17Þ

qyðr; sÞ ¼
X

n

qyn
�
s
�
fnðrÞ; ð18Þ

uðr; sÞ ¼
X

n

unðsÞfnðrÞ; ð19Þ

VðrÞ ¼
X

n

VnfnðrÞ; ð20Þ

hðrÞ ¼
X

n

hnfnðrÞ: ð21Þ

In principle, the number of basis functions for the expansion
should be infinity. However, we can take a finite number of
fn(r) in actual calculations, if the convergence of the result is
realized.

In terms of these basis functions, the modified diffusion
equations of Eqs. (8) and (9) have the following form

dqnðsÞ
ds
¼�

X
l

HnlðsÞqlðsÞ; ð22Þ

dqyn
�
s
�

ds
¼
X

l

Hnl

�
s
�
qyl
�
s
�
; ð23Þ

where

HnlðsÞ ¼ lndnlþ
X

m

GnmlumðsÞ ð24Þ

with

Gnml ¼
1

V

Z
dr fnðrÞfmðrÞflðrÞ: ð25Þ

This matrix equation can be solved in terms of the eigenvalues
and eigenfunctions of the matrix Hnl(s) to obtain the end-
integrated propagators qn(s) and qynðsÞ. A detailed exposition
of this process is given in Appendix.
The mean-field equations in the reciprocal space can be
expressed as

uA;n ¼ cNfB;n�Vn þ hn; ð26Þ

uB;n ¼ cNfA;nþVn þ hn; ð27Þ

fA;n ¼
1

Qc

X
ml
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Z f

0

ds qm

�
s
�
qyl
�
s
�
; ð28Þ
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1

Qc

X
ml

Gnml
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f

ds qm

�
s
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qyl
�
s
�
; ð29Þ

fA;n þfB;n ¼ dn;1 ð30Þ

with

Qc ¼
X

n

qn

�
s
�
qyn
�
s
�
: ð31Þ

Notice that in Eq. (31) the sum is actually independent of s.
We solve this set of equations numerically by standard itera-
tion. In the present reciprocal SCMFT calculation, all the
structures satisfying the symmetry of the basis functions’ set
are scanned. As a result, the structure with the lowest free en-
ergy is picked out spontaneously at a given condition, and the
density distribution and the corresponding free energy of the
chosen structure are obtained.

3. Results and conclusions

Within the reciprocal SCMFT, we explore the confinement
effects, both the structure frustration and the surface effect, on
the phase behavior in the confined lamella-forming symmetric
diblock copolymer melts. The surfaces can be neutral or pref-
erential in the model depending on the strength of the surface
field V(r), which is taken to have the following form in the
one-dimensional calculation,

VðxÞ ¼ �V0

h
e�x2=z2 þ e�ðx�DÞ2=z2

i
; ð32Þ

where V0 (scaled by kBT ) and z are the strength and the cor-
relation length of V(r), respectively. For simplicity without
loosing physics, we fix z to investigate the effect of V0.

In order to investigate the nature of phase transitions in the
confined system, we define an order-parameter-like quantity
je, which is a measure of the amplitude of the density distri-
bution deviation from homogeneous, given by

je ¼
1

2e

ZD=2þe

D=2�e

dx½fAðxÞ � f �2; ð33Þ

where e is a small quantity taken to be Rg in the calculation.
From the definition, je is zero for the homogeneous (disor-
dered) phase and begins to take a nonzero value when the
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system becomes ordered. Although je is not a well-defined
parameter, it is an appropriate parameter in practice for the
investigation of ODT. For convenience of the presentation,
we will call je as the order parameter.

3.1. Neutral surfaces

By setting the strength of the surface field V0 to be zero, the
neutral surface is realized in the model. This allows us to in-
vestigate the effect of the structure frustration separately.

Firstly, we study the symmetric diblock copolymer melts
confined between two parallel slabs with smaller separation
of D¼ 3.2Rg. In Fig. 1, we illustrate the evolution of the order
parameter je with cN (or the temperature). The order param-
eter je goes continuously to zero when cN decreases (or the
temperature increases) to the critical value of 10.5. It is the
signature of a second-order phase transition. The correspond-
ing evolution of the structure, or the density distribution, with
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0.08
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Fig. 1. The evolution of the order parameter je with cN for the symmetric

diblock copolymers confined between two slabs of D¼ 3.2Rg with neutral

surfaces.
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Fig. 2. The evolution of the spatial density distribution fB with cN for the

symmetric diblock copolymers confined between two slabs of D¼ 3.2Rg

with neutral surfaces.
cN is shown in Fig. 2, in which the lamellar pattern changes
continuously to homogeneous when cN decreases to the crit-
ical value of 10.5. The continuous nature of the ODT is further
verified in Fig. 3 by the free energy shown in solid line, cor-
responding to the evolution of structure in Fig. 2. With the de-
crease of cN, the free energy of the most stable structures from
the SCMFT calculation is plotted together with the Florye
Huggins free energy, F¼ b�1f(1� f )cN, corresponding to
the disordered structure. When cN decreases to the critical
value of 10.5, the free energy of the lamellar structure contin-
uously transits to the free energy of the disordered structure.

Secondly, we study the system with larger separations of
slabs by SCMFT. In Fig. 4, we illustrate the order parameter
evolution for the symmetric diblocks confined in slabs with
D¼ 7.5Rg. A new jump at cN¼ 10.85 appears besides the
continuous ODT, which is the signature of a first-order

10.0 10.5 11.0 11.5 12.0
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2.6
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2.8

2.9

3.0

SCMFT

F-H

F

χΝ

Fig. 3. The free energy curves as a function of cN for the symmetric diblock

copolymers confined between two slabs of D¼ 3.2Rg with neutral surfaces.

The solid line is from the SCMFT for different ordered structures, which cor-

responds to different cNs. The dashed line is from the FloryeHuggins theory

for the homogeneous structure.
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Fig. 4. The order parameter curve as a function of cN for the symmetric

diblock copolymers confined between two slabs of D¼ 7.5Rg with neutral

surfaces. The jump of the order parameter happens at cN¼ 10.85.
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ordereorder transition (OOT). In order to understand this tran-
sition clearly, we plot the corresponding transition picture of
density pattern in Fig. 5. It is evident that the jump of je cor-
responds to a first-order OOT. For this OOT, with the increase
of the temperature, the morphology in the finite space evolves
from the symmetric lamella to the antisymmetric one, accom-
panying an increase of a layer. This is consistent with the
physical intuition that the polymer chains are not so stretched
at higher temperature due to the entropy effect and one more
layer can be accommodated.

In experiments, the size of the confinement is an important
control parameter. We illustrate the size dependence of the
ODT point, (cN )t in Fig. 6. For a small enough separation
D, since no fluctuations can happen, (cN )t goes to infinity.
As D increases, (cN )t first falls down to a minimum at a given
D, then oscillates and eventually approaches the bulk value of
ðcNÞ0t ¼ 10:5. Furthermore, the value of each minimum is ex-
actly ðcNÞ0t . The observation that (cN )t recovers ðcNÞ0t for the
large D is consistent with the physical intuition, of which the
confinement is in fact removed from the system when the size
of confinement is large enough.

The ODT coincides exactly with the spinodal point of the
bulk symmetric diblock copolymer melts. To check this in
the confined case, we calculate the spinodal point using the
Gaussian fluctuation theory, which was described thoroughly
in Ref. [49]. In Fig. 6, the size dependence of the spinodal point
is also shown as (cN )s. It turns out that the spinodal coincides
with the ODT exactly. This is also an indication of the fact that
the ODT is a continuous transition in this confined system.

Also, we plot the size dependence of (cN )s from the
LandaueBrazovskii theory. It fits other two lines well with
slight deviations due to the fact that the LandaueBrazovskii
theory is only an approximation to the Gaussian fluctuation
theory by an expansion around the critical wave vector q0,
whose results are only correct when kn is near q0.

0.0 2.5 5.0 7.5
0.3

0.4

0.5

0.6

0.7

φ B

x/R
g

Fig. 5. The structure curve for the typical OOT transition for the symmetric

diblock copolymers confined between two slabs of D¼ 7.5Rg with neutral sur-

faces. The structure of the dashed line transits into the structure of the dotted

line as cN decreases past 10.85. The solid line characterizes the disordered

structure.
In Fig. 6, the parts near minima agree well for these three
different methods. It can be easily understood as follows.
Within the LandaueBrazovskii theory [49], ðcNÞs ¼ ðcNÞ0s þ
x2

0= 8q2
0½ðk2

n � q2
0Þ

2�min. D*, at which the minima (cN )s¼ 10.5
occur, can be exactly determined by kn� ¼ n�p=D� ¼ q0, lead-
ing to D*¼ n*p/q0¼ (n*/2)L0. Here, n*¼ 1, 2, 3., and the
natural period L0¼ 2p/q0. This analysis indicates that the spi-
nodal point is kept unchanged from the bulk value when D*
is an integer or half-odd-integer multiple of the natural period
L0 for the confined homogeneous melts. Furthermore, the
morphology formed here can be observed from the SCMFT
calculation. If D* is an integer multiple of L0 (n*¼ even
integer), the symmetric parallel lamella is formed; If D* is
a half-odd-integer multiple of L0 (n*¼ odd integer), the anti-
symmetric parallel lamella is formed. At most cases D s D*,
the symmetric or antisymmetric lamella is stretched or com-
pressed, and the corresponding (cN )s from the Gaussian fluc-
tuation or the LandaueBrazovskii theory increases from 10.5.
This increase of (cN )s has been understood well due to the
incommensurability between kn� and q0. On the other hand,
since (cN )s¼ (cN )t in the present case, we can understand
this increase by analyzing (cN )t. Within the SCMFT, the mor-
phology after the ODT is calculated. For most D the stretched
or compressed lamellae lead to energy penalty, which effec-
tively increases (cN )t at the ODT. Only the D* at which no
extra energy penalty happens leads to (cN )t¼ 10.5.

It is helpful to understand the structure frustration by ana-
lyzing the different fluctuation modes in the confined melts.
As mentioned in Ref. [49], the fluctuation modes can be
classified in terms of the basis fn(r), with the corresponding
fluctuation energy cost ðCRPAÞ�1

n . By simple calculation, the
energy cost ðCRPAÞ�1

0 mode is infinity. This is due to the in-
compressibility of the system. In Fig. 7, we illustrate the
size dependence of 2en, which is proportional to the fluctua-
tion energy cost, for the modes of n¼ 1e4. Here, en is the

0 10 12 14

10.5

11.0

11.5

2 4 6 8

(χ
N

) t

D/Rg

Fig. 6. The size dependences of (cN )t and (cN )s for the symmetric diblock

copolymer melts confined between two slabs with neutral surfaces. The results

from the SCMFT and the Gaussian fluctuation theory are represented as solid

line and dotted line, respectively, which are almost overlapped. The dashed

line is from the LandaueBrazovskii theory.
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eigenvalue of ~C�1. For a given size D, the spinodal is deter-
mined by the mode n* with the lowest energy cost, or
ðcNÞs ¼ 2en� . It is evident that n* is dependent on D and
n*¼ 1e4, in order with the increase of D. This is exactly
the representation of the structure frustration effect. Depend-
ing on the compatibility between the characteristic length of
the fluctuation mode and the natural period, the most unstable
fluctuation mode n* jumps from one to another.

It should be noted that all the results bear a restriction to
the one-dimensional calculation on the assumption of forming
parallel lamella after the MST. In fact, this assumption is not
always realistic and other structures, like the perpendicular
lamella, can be formed in some cases. On the other hand,
the frustration effect can be focused on and understood clearly
by combining the above three different theoretical frameworks
in the present model. The frustration effect of confinement
from the present calculation will be generally true for the
confined systems in which there is no free dimension for
fluctuation.

3.2. Preferential surfaces

In most experiments, the surfaces have a preferential affin-
ity to one of the components of the diblock copolymers. By
setting the strength of the surface field V0> 0, the surfaces
prefer to contact with one kind of the monomers, let us say
B monomer in the present study.

As V0 is an important control parameter in experiments, we
investigate the effect of V0 within the SCMFT. In Fig. 8, the
effect of V0 on the ODT is illustrated by the order parameter
plot for D¼ 10Rg and V0¼ 0, 0.1, 1 and 2. For V0¼ 0, an ex-
act ODT can be defined from the order parameter curve, which
has been investigated in last section. With the increase of V0,
the transition becomes weaker. Actually, for a large V0, we
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Fig. 7. The size dependence of the eigenvalue of ~C�1, or en, for the symmetric

diblock copolymer melts confined between two slabs with neutral surfaces.

The eigenvalue en is proportional to the fluctuation energy cost of the mode n.

The solid, dashed, dotted and dash-dotted lines correspond to the modes of

n¼ 1e4, respectively.
cannot define an exact ODT in the finite space. This is due
to the fact that the strong preferential surface can induce an
oscillating pattern over the whole finite space even when the
temperature is high, and the disordered phase cannot be de-
fined effectively. In order to circumvent this problem, we
take a weak surface field and a relatively large space. At the
same time, by the definition of the order parameter je, we al-
ways look into the chosen range of e(¼ Rg) to investigate the
ODT. Based on this consideration, we choose V0¼ 0.1 and
a relatively large size.

In Fig. 9, we illustrate the order parameter evolution with
cN for D¼ 3L0¼ 9.6Rg and V0¼ 0.1. The corresponding den-
sity pattern evolution is plotted in Fig. 10. Two transitions
happen during the evolution. At large cN (low temperature),
the lamellar structure L2 is stable for the system. With the
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Fig. 8. The order parameter curves as a function of cN for the symmetric

diblock copolymer melts confined between two slabs of D¼ 10Rg with prefer-

ential surfaces of different surface strengths of V0. The solid, dashed, dotted

and dash-dotted lines correspond to the cases of V0¼ 0, 0.1, 1 and 2,

respectively.
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Fig. 9. The evolution of the order parameter je with cN for the symmetric

diblock copolymer melts confined between two slabs of D¼ 3L0¼ 9.6Rg

and V0¼ 0.1. The jump of the order parameter happens at cN¼ 13.0.
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decreasing of cN (high temperature), the order parameter je

behaves a jump, corresponding to a first-order OOT from L2

to L3. For the different morphologies mentioned above, we
follow the notation in Ref. [28]. Further increasing the temper-
ature, a continuous ODT from L3 to the disordered phase
occurs at (cN )t.

In Fig. 11, we show the size dependence of (cN )t for
V0¼ 0.1. It indicates that (cN )t is effectively decreased by
the surface effect. Due to the connectivity of the two blocks,
the preferential surfaces can induce an oscillating pattern
for the diblock melts near the surfaces, which will help the
disordered homogeneous phase far from the surfaces to be or-
dered. With the increase of D, (cN )t increases and approaches
to ðcNÞ0t , finally recovering to ðcNÞ0t ¼ 10:5 for D larger than
15L0. This is consistent with the physical intuition, of which
the confinement is in fact removed when its size is large
enough.
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Fig. 10. The evolution of the spatial density distribution fB with cN for

the symmetric diblock copolymers confined between two slabs of

D¼ 3L0¼ 9.6Rg and V0¼ 0.1.
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Fig. 11. The size dependence of (cN )t for the symmetric diblock copolymer

melts confined between two slabs of V0¼ 0.1.
4. Conclusions

The phase transitions of confined symmetric diblock copol-
ymer melts are investigated by adopting several theoretical
methods on the mean-field level. Compared to the previous
works, the combination of these different theoretical methods
can give a more comprehensive and detailed picture of phase
transitions, and the nature of phase transitions is understood
more clearly.

Within the reciprocal SCMFT, we investigate the effects of
confinement, both the structure frustration and the surface
effect, on the phase transitions of confined symmetric diblock
copolymer melts. By assuming the lamellae formed orient
parallel to the surface, we only carried out the SCMFT in
one-dimension along the direction of the confinement. The
surface can be neutral or preferential in the model depending
on the strength of surface field.

The neutral surfaces are realized by taking V0 as zero. In
this case, the MST, or the ODT, is a continuous second-order
phase transition for the confined symmetric diblock copolymer
melts by analyzing the evolution of the order parameter and
the free energy with the temperature. The first-order OOT is
also observed in the present model. Furthermore, we employ
the Gaussian fluctuation theory and the LandaueBrazovskii
theory to calculate the spinodal point. The size dependences
of (cN )t from the SCMFT, of (cN )s from both the Gaussian
fluctuation theory and the LandaueBrazovskii theory are plot-
ted together. They agree well with each other. Thus, (cN )t

coincides with (cN )s for the confined symmetric diblock
copolymer melts, which indicates that the MST is a continuous
second-order transition furthermore. An oscillative behavior
for the size dependence of (cN )t and (cN )s is observed, which
can be understood well as structure frustration. Especially, the
analysis of the most unstable fluctuation mode in the confined
melts makes the structure frustration effect more transparent.

If the surface field is large enough and preferential to one
component of diblock copolymer, an exact ODT cannot be
defined for a finite system. To circumvent this, the SCMFT
calculation is carried out in a relatively large space with
a weak surface field. The first-order OOT occurs at low tem-
perature, while the ODT is still continuous. The surface effect
plays its role to decrease (cN )t effectively. This is due to the
fact that the preferential interaction can help the diblock
copolymer chains to be ordered.

The observation that the ODT is continuous second-order
transition bears a restriction to the mean-field nature of the
present calculation, which is valid when the degree of poly-
merization N is large enough. Physically, due to the connectiv-
ity of the two blocks, diblock copolymers cannot behave a true
continuous transition with a critical point. The transitions for
diblock copolymers belong to the Brazovskii universality
class, which are characterized by having large field fluctua-
tions in the vicinity of a shell of nonzero wave vectors and ex-
hibit a fluctuation-induced first-order transition. In particular,
for the symmetric bulk diblock melts, the fluctuation effects
change the second-order nature in Leibler’s mean-field theory
to first-order. Thus, it is expected that the inclusion of
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fluctuations will modify the second-order nature in the present
mean-field calculation to first-order for the confined symmet-
ric diblock system.

In the present model, the structure frustration and the sur-
face effect for confined systems become more transparent
and can be understood quite well. On the other hand, all the
results are limited to the one-dimensional calculation with
the assumption that the lamella formed is parallel to the sur-
face. In the future work, we will relax this constraint and carry
out calculations in more realistic three-dimension.
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Appendix

In this, we give a detailed exposition to solve the modified
diffusion equation in reciprocal space.

The modified diffusion equations have the form

dqnðsÞ
ds
¼�

X
l

HnlðsÞqlðsÞ; ðA1Þ

dqyn
�
s
�

ds
¼
X

l

Hnl

�
s
�
qyl
�
s
�
; ðA2Þ

where

HnlðsÞ ¼ lndnlþ
X

m

GnmlumðsÞ: ðA3Þ

with

Gnml ¼
1

V

Z
dr fnðrÞfmðrÞflðrÞ ðA4Þ

The solution of this equation can be found in terms of the ei-
genfunctions and eigenvalues of the matrix Hnm(s). For s< f,X

m

HnmðsÞJðuÞA;m ¼ e
ðuÞ
A J

ðuÞ
A;n: ðA5Þ

For s> f,

X
m

HnmðsÞJðuÞB;m ¼ e
ðuÞ
B J

ðuÞ
B;n: ðA6Þ

For s< f, we do the expansion
qnðsÞ ¼
X

u

qðuÞðsÞJðuÞA;n; ðA7Þ

where q(u)(s) satisfies

dqðuÞðsÞ
ds

¼�e
ðuÞ
A qðuÞðsÞ ðA8Þ

with the solution

qðuÞðsÞ ¼ e�e
ðuÞ
A

sqðuÞð0Þ: ðA9Þ

Here, q(u)(0) is determined from the initial condition q(r, 0)¼ 1
in the following way

qðuÞð0Þ ¼
X

n

J
ðuÞ
A;nqnð0Þ ðA10Þ

with

qnð0Þ ¼
1

V

Z
dr fnðrÞqðr;0Þ ¼

1

V

Z
dr fnðrÞ ¼ dn;0: ðA11Þ

Then

qðuÞð0Þ ¼
X

n

J
ðuÞ
A;nqnð0Þ ¼J

ðuÞ
A;0: ðA12Þ

Thus, for s< f, we have

qnðsÞ ¼
X

u

e�e
ðuÞ
A

sJ
ðuÞ
A;0J

ðuÞ
A;n: ðA13Þ

For s� f, the appropriate expansion is

qnðsÞ ¼
X

u

qðuÞðsÞJðuÞB;n; ðA14Þ

and an analogous development gives

qðuÞðsÞ ¼ e�e
ðuÞ
B
ðs�f ÞqðuÞðf Þ; ðA15Þ

where

qðuÞðf Þ ¼
X

n

J
ðuÞ
B;nqnðf Þ ðA16Þ

with

qnðf Þ ¼
X

u

e�e
ðuÞ
A

f J
ðuÞ
A;0J

ðuÞ
A;n: ðA17Þ

Then

qðuÞðf Þ ¼
X

u1

e�e
ðu1Þ
A

f L
ðu1;uÞ
AB J

ðu1Þ
A;0 : ðA18Þ

Here, we define

L
ðu1;u2Þ
AB ¼

X
n

J
ðu1Þ
A;n J

ðu2Þ
B;n : ðA19Þ
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Thus, for s� f, we have

qnðsÞ ¼
X

u1

X
u2

e�e
ðu1Þ
A

f e�e
ðu2Þ
B
ðs�f ÞL

ðu1;u2Þ
AB J

ðu1Þ
A;0 J

ðu2Þ
B;n : ðA20Þ

The propagator qynðsÞ can be obtained by the analogous
treatment for qn(s). The only difference is to start with s> f
and take the initial condition qy(r, 1)¼ 1. Here we will give
the result directly. For s> f,

qynðsÞ ¼
X

u

e�e
ðuÞ
B
ð1�sÞJ

ðuÞ
B;0J

ðuÞ
B;n: ðA21Þ

For s� f,

qynðsÞ ¼
X

u1

X
u2

e�e
ðu1Þ
A
ðf�sÞe�e

ðu2Þ
B
ð1�f ÞL

ðu1;u2Þ
AB J

ðu1Þ
A;n J

ðu2Þ
B;0 : ðA22Þ

Here, the modified diffusion equations of the end-integrated
propagators, qn(s) and qynðsÞ, have been solved by expressing
them in terms of the eigenvalues and eigenfunctions of Hnl(s).
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